Johnny EL RAYES1, Elie SALIBA1, Nicolas NICOLAS1, Ismat GHANEM1

ABSTRACT • Serum creatine kinase (CK) is the gold standard marker for muscle injury. Any muscle damage, if severe enough, can lead to rhabdomyolysis (RM) and subsequent renal failure if not treated properly. This is usually correlated with high levels of creatine kinase. Spine interventions in orthopaedic surgery are associated with surgical “injury” to the back muscles and abnormal levels of creatine kinase. Rhabdomyolysis associated with spine surgery is in fact multifactorial, and most commonly due to prolonged surgery time and certain operative positions, correlated with high risk of developing compartment syndrome (CS). However, the final complication of acute renal failure is exceptional in these procedures. This paper reviews all reported cases of rhabdomyolysis and acute renal failure following spinal interventions, and discusses the role of creatine kinase in the evaluation of muscle injury as a predictor of rhabdomyolysis and acute renal failure. Most spine surgeries are in fact not correlated with rhabdomyolysis and acute renal failure as this correlates with very high levels of creatine kinase. As a result, monitoring creatine kinase is only advised to follow in certain circumstances, and will only lead to unnecessary expenses.

Keywords: creatine kinase; rhabdomyolysis; acute renal failure; spine surgery; posterior instrumentation and fusion

INTRODUCTION

Orthopedic surgery, and particularly spine surgery, is known for its invasive surgical approaches. Muscle damage can be extensive despite all precautions that can be taken, not only from direct trauma during the operative procedure, but also from prolonged immobilization required [1].

Rhabdomyolysis involves the rapid dissolution of injured skeletal muscle [2]. Any form of muscle damage can initiate RM. Diagnosis is based on plasma creatine kinase [3]. The fearful complication is RM-induced kidney failure. It occurs in one third of RM cases [4].

However, there are very few cases of acute renal failure (ARF) following an orthopedic intervention reported in the literature.

The purpose of this review is to evaluate the value of creatine kinase (CK) measurement as a predictor of ARF following spine surgery.

METHODS

An extensive literature search was undertaken by exploring Pubmed using the following keywords: creatine kinase, creatine phosphokinase, rhabdomyolysis, acute renal failure, spine surgery, posterior instrumentation and fusion. Fifty-six papers dealing partially or specifically with this review’s subject were selected.

DEFINITION OF RM – ROLE OF CK

Bywaters and Beall were the first to describe rhabdomyolysis in 1941 after reporting pigmented casts in renal tubules during autopsies performed after crush injuries during World War II [5]. Rhabdomyolysis is a complex medical condition involving the disruption of striated muscle integrity. RM ranges from an asymptomatic condition to a life threatening one associated with ARF. Mortality

1Department of Orthopaedic Surgery, University Hospital Hôtel-Dieu de France (HDF), Beirut, Lebanon.

*Corresponding author: Johnny El Rayes, MD. e-mail: dr_rayes@hotmail.com
rate can be as high as 8% [6]. It is clinically identified by a triad of symptoms: myalgia, weakness, and myoglobinuria. However, this triad is only observed in less than 10% of patients [2].

An elevated CK level is the most sensitive laboratory test for evaluating an injury to muscles, with a half-life of 1.5 days. It is currently the gold standard for determining RM. Although a cutoff threshold has not been determined, a CK plasma concentration 5 times the upper limit of the normal range is commonly used [6]. A concentration > 16000 U/L is correlated to development of acute tubular necrosis [7].

However, a recent retrospective cohort analysis of 522 patients diagnosed with RM showed that initial CK levels (median of 3541 U/L) are not predictive of mortality or renal dysfunction [8]. Another study done on 50 patients admitted for RM after trauma or electrical burns showed a CK level > 1250 U/L in 93.33% of 15 patients who developed ARF [9]. Rodriguez et al. assessed risk factors for ARF in 126 patients with severe RM (CK > 5000 U/L); 58% developed ARF and the following variables were independently associated: peak CK, hypoalbuminemia, metabolic acidosis, and decreased prothrombin time [10]. Sharp et al. also reviewed 148 patients with post-traumatic RM [11]. The authors found that a serum creatinine ≥ 1.5 mg/dL, base deficit ≤ -4, serum CK ≥ 5000 U/L, and myoglobinuria increase the risk of dialysis-requiring ARF. Serum CK level had a positive predictive value of 80%, and base deficit had a negative predictive value of 100%. They propose an algorithm for managing RM in traumatic and surgical patients; every patient with RM is qualified as low, intermediate, or high risk for developing ARF based on his creatinine and base deficit serum levels. They conclude that CK monitoring is necessary only in the intermediate and high-risk group.

Another survey on 26 patients admitted for RM showed a correlation between onset of ARF (65%) and CK level on admission (mean level of 38351 U/L) [12]. In an hospital population group (n = 93) with severe RM (CK > 5000 U/L), incidence of ARF (51%) was higher in patients with CK levels exceeding 15000 U/L. Mortality in this group was 32% [13].

The causes of RM are many, but one that would interest us in our review is the compartment syndrome (CS).

Post-traumatic and/or ischemic muscle damage to muscle groups sheathed in noncompliant fascia leads to an elevation in intracompartmental pressure from engorged muscles [2]. This can lead to further tissue ischemia when pressure is > 30 mmHg. Whitesides et al. estimated that muscle ischemia develops when tissue pressures within a closed compartment are within 10-30 mmHg of the diastolic pressure [14]. Ihedioha et al. suggested that although elevated CK levels are not diagnostic of CS, they are a useful adjunct in making the diagnosis and therefore measuring CK should be done in all patients with high index of suspicion [15]. Fasciotomy is the treatment of choice. They also found that early fasciotomy (< 12 hours) can significantly lower CK levels, and lessen muscle damage [15]. On 39 patients with CS, Valdez et al. found that CK level > 4000 U/L is associated with this entity, and when combining this finding to chloride level > 104 mg/dL and minimal blood urea nitrogen level < 10 mg/dL, the association is 100% [16].

Tsai et al. showed a high percentage of RM (44.2%) and subsequent ARF (39.1%) in a series of 52 patients admitted with traumatic limb compartment syndrome [17]. Compartment syndrome is an unusual but morbid postoperative complication that the orthopaedic surgeon should be aware of. The rare cases of compartment syndromes and subsequent RM and ARF after an orthopaedic intervention are mostly described in lumbar surgery.

POSTOPERATIVE RM

Acute postoperative renal failure is thought to arise secondary to acute tubular necrosis from volume depletion, reduction in glomerular filtration rate, hypotension, and nephrotoxic drugs [18]. Mechanical blocking of renal tubules by the degradation products of myoglobin secondary to RM also contributes to acute tubular necrosis. These products also seem to be toxic in an acidic medium [19].

In their recent review on surgical RM, De Tommasi and Cusimano found that patients undergoing bariatric, urologic and gynecologic surgery have the highest reported cases of postoperative RM [20]. Most cases are described in the dorsal lithotomy and knee chest position. Several cases are also reported in the lateral position. In their paper, they attributed RM to muscle damage in the hip grid muscles from prolonged surgical position, as they presented three cases of RM occurring after lateral position for a neurosurgery procedure with postoperative pain and hyperintensity on magnetic resonance imaging in this region. They also identified several risk factors associated with RM, including length of surgery, high BMI (> 28 kg/m²), large muscle mass, peripheral vascular diseases, flexion of the table at the iliac crest, the use of kidney bolster (likely increases pressure over the dependent flank and hip area), tourniquets, tight dressings, and casts, particularly in patients with episodes of hypotension during the surgical procedure.

Woernle et al. analyzed 150 patients undergoing elective neurosurgery intervention to determine risk factors for CK elevation postoperatively [21]. Fifty were in lateral position, and 100 were in prone or supine position. In 55 cases, intraoperative neurophysiological monitoring was performed. They found a significant association between serum CK level and the lateral position, and also between CK levels and the neurophysiological monitoring, where muscles were not pharmacologically relaxed. Another similar study on 96 patients found a correlation with the lateral position, duration of surgery, and BMI, but not with motor evoked potentials [22].
One population at risk of developing postoperative RM that needs to be mentioned is the elderly obese patient. About 2 billion people are overweight and one third of them obese [23]. More than 30% of patients older than 60 years are in fact obese. Kelz et al. did a matched case-control study on 1208 elderly surgical patients aged between 65 and 80 years old (514 with ARF, with 35% following an orthopaedic procedure) [24]. They found that obesity is an independent risk factor for postoperative ARF (OR = 1.68, p = 0.01).

Another interesting finding reported by Nielson et al. is the higher incidence of postoperative ARF in patients taking an angiotensin axis blockade therapy after an elective major orthopaedic surgery [25]. In 922 patients who underwent spinal fusion, total knee arthroplasty (TKA), or total hip arthroplasty (THA), postoperative ARF was significantly higher in patients receiving this therapy (8.3% vs 1.7%; OR = 5.4; p < 0.001). It is also

TABLE I
CASE REPORTS OF RHABDOMYOLYSIS AND ACUTE RENAL FAILURE FOLLOWING SPINE SURGERY

<table>
<thead>
<tr>
<th>Author</th>
<th>Patient(s)</th>
<th>Gender</th>
<th>Age</th>
<th>BMI</th>
<th>Surgery</th>
<th>Position</th>
<th>Length of surgery (h)</th>
<th>CK peak (U/L)</th>
<th>ARF</th>
<th>CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gordon et al. 1953 [26]</td>
<td>M 35</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>Lumbar hemilaminectomy</td>
<td>KPC</td>
<td>> 3</td>
<td>NR</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Keim et al. 1970 [27]</td>
<td>F 11.9</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>Thoracic idiopathic scoliosis</td>
<td>KCP</td>
<td>4</td>
<td>11880</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cruette et al. 1986 [28]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Spondylolisthesis</td>
<td>KCP</td>
<td>5.33</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Aschoff et al. 1990 [29]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Lumbar discectomy</td>
<td>KCP</td>
<td>> 3</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>Targa et al. 1991 [54]</td>
<td>NR Mean 47</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>Hemilaminectomy</td>
<td>LDP</td>
<td>Mean 3.4</td>
<td>NR</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Sancineto & Godoy Monzon 2004 [31]</td>
<td>M 56</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>Lumbar spine decompression</td>
<td>KCP</td>
<td>3.33</td>
<td>23800</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Papadikas et al. 2008 [32]</td>
<td>M 52 125 kg</td>
<td></td>
<td></td>
<td></td>
<td>Posterior decompression L2-5 fusion & L4-5 IF</td>
<td>Prone</td>
<td>7</td>
<td>17741</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Gupta et al. 2008 [19]</td>
<td>M 35</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>Lumbar discectomy</td>
<td>KCP</td>
<td>6</td>
<td>NR</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Magagi et al. 2010 [35]</td>
<td>F 38</td>
<td>NR</td>
<td></td>
<td>NR</td>
<td>L5-S1 disc replacement</td>
<td>Supine</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
</tr>
<tr>
<td>Rudolph et al. 2011 [55]</td>
<td>M 65</td>
<td>-</td>
<td></td>
<td>-</td>
<td>Lumbar spine decompression</td>
<td>KCP</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dakwar et al. 2011 [34]</td>
<td>M 60 25</td>
<td></td>
<td></td>
<td></td>
<td>T10-L4 IF</td>
<td>LDP</td>
<td>10</td>
<td>24704</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>F 63 25</td>
<td></td>
<td></td>
<td></td>
<td>L1-4 IF</td>
<td>LDP</td>
<td>6.95</td>
<td>26800</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M 68 40</td>
<td></td>
<td></td>
<td></td>
<td>L2-5 IF</td>
<td>LDP</td>
<td>5.48</td>
<td>56000</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M 67 36</td>
<td></td>
<td></td>
<td></td>
<td>L2-5 IF</td>
<td>LDP</td>
<td>5.25</td>
<td>16800</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M 71 28</td>
<td></td>
<td></td>
<td></td>
<td>T11-L3 IF</td>
<td>LDP</td>
<td>7.3</td>
<td>5000</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>M 49 28</td>
<td></td>
<td></td>
<td></td>
<td>L3-S1 decompression + L2-5 posterior fusion</td>
<td>Prone</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Dahab et al. 2012 [56]</td>
<td>F 47 34</td>
<td></td>
<td></td>
<td></td>
<td>L4-S1 fusion + L5 laminectomy</td>
<td>Prone</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>

BMI: body mass index
LDP: lateral decubitus position
CK: creatine kinase
KCP: knee chest position
ARF: acute renal failure
CS: compartment syndrome
NR: not reported
IF: interbody fusion
-: not accessible

J. EL RAYES et al. – Creatine kinase & acute renal failure in spine surgery
Lebanese Medical Journal 2017 • Volume 65 (3) 141
important to note that postinduction hypotension was also significantly higher in these patients, along with prolonged hospital stay.

CK, RM & ARF IN SPINE SURGERY

The knee-chest position (KCP) is commonly used for lumbar disc surgery because of easy access to the intervertebral space and reduced bleeding by decreasing epidural venous pressure [19]. However, it can lead to disturbance of arterial microcirculation and the capillary network, with subsequent edema and decrease in muscle perfusion, leading to cell death. An increase in the tissue pressure, exceeding 35 to 40 mmHg, over a prolonged period in a closed compartment can lead to compartment syndrome in the lower limbs. If unrecognized, it can lead to RM and subsequent ARF as discussed above.

Table I is a summary of the reported cases of RM and ARF following orthopedic spinal surgery. The first case of ARF following a lumbar surgery in the KCP was described in 1953 [26]. Keim et al. in 1970 described a case of ARF following a spinal fusion in the KCP for idiopathic scoliosis in a 12-year-old girl [27]. Surgery took 4 hours. The authors attributed this unexpected complication to extreme hips and knees flexion that obstructed blood flow to lower limbs during the operation, which lead to CS and myositis. Serum CK peaked at day 1 postoperatively at 11880 mg/dL. Another 2 cases of RM with subsequent ARF were reported in 1986 following surgery for spondylolisthesis in the KCP that lasted around 5 hours [28]. The authors attributed this finding to prolonged muscle compression and advised the time for a KCP to be kept within 3 hours to avoid any similar problem. Aschoff et al. in 1990 reported 2 cases of CS following lumbar discectomy in the KCP [29]. The authors urge a fasciotomy within 6 hours to avoid serious muscular deficits. They recognize the compartment syndrome as a specific, but rare risk of prolonged KCP. Foster described a case of RM in an obese patient undergoing a revision lumbar surgery in the prone position on a Jackson table [30]. He attributed this complication to incomplete decompression of the abdominal girth after positioning the patient. The procedure lasted 6 hours, with episode of hypotension on transfer to the supine position at the end. Serum CK level at day 1 was 20480 U/L. ARF was prevented. Areas of skeletal muscle that may have been ischemic include the abdominal wall, the paraspinal muscles from continuous retraction, and the thighs, although the author used thigh pads and did not find any signs of external pressure on thighs postoperatively. Moreover, hips and legs were extended during the procedure. Sancineto and Godoy Monzo reported one case of RM and ARF following lumbar decompression in the KCP [31]. They urge a fasciotomy using 30 mmHg as the critical intracompartmental pressure in a normotensive patient to obtain an excellent recovery, because a pressure of about 30 mmHg seems to be the limit for obstruction of flow in muscle capillaries.

Another case of ARF followed spinal decompression and fusion on an obese patient in the prone position [32]. The authors used the Jackson frame to avoid excessive muscle pressure. However, they conclude that abdominal decompression is not always satisfactory if the patient is obese. In fact, Lagandre et al. reported in their prospective study that marked obesity (BMI > 40 kg/m²), diabetes, and duration of surgery > 4 hours are associated with increased risk of RM [33]. Dakwar et al. recently reported the first case series of RM and ARF following minimally invasive spine surgery [34]. Five of 315 patients undergoing lateral transpsoas spine surgery developed ARF (See details in Table I). The authors advise to consider staging the procedure in high-risk patients.

Magaji et al. reported in 2010 the first and only case of CS of the leg following spine surgery through an anterior approach in the supine position [35]. However, one major factor in this case is the injury of the iliac vein. The authors specified that no pressure was actually applied on lower limbs muscle group and therefore the chance of having CS from direct pressure in the supine position is highly unlikely. Ahmad et al. were the last to report 2 cases of RM following lumbar surgery on a Jackson table in a prone position [36]. The authors related this complication to reversing the position of the iliac crest and hip pads on the Jackson table. Although they achieve better lumbar lordosis, the hips were slightly extended rather than slightly flexed, which could have generated more pressure in the region directly above the pads.

Serum CK level and especially its isoenzyme MM is significantly correlated to the severity of surgery-induced tissue damage. It increases gradually after incision [37].

One study compared CK levels in 3 groups postoperatively; group A included spine surgery in the knee-chest position, group B neurosurgery without any muscle stretching, and group C abdominal surgery with retractors [38]. Interestingly, CK levels were significantly higher in groups A and C.

Kawagushi et al. evaluated intraoperative factors for back muscle injury and found positive correlation with retraction pressure, time, and extent of exposure [39]. CK (and especially isoenzyme MM, 90% of total CK) is increased after surgery and reached a plateau by day 1, followed by return to normal within one week. CK elevations following spine surgery is significantly higher in men than in women, most probably due to muscle mass difference [40]. Although abdominal muscles and the iliopsoas muscle are involved in the anterior spine approaches, CK elevations are significantly lower than in posterior approaches that involve multifidus and erector spinae muscles. This is explained by the difference in muscle volume iatrogenically damaged.

Decreased muscle strength and atrophy is typical after back surgery, as was demonstrated by Mayer et al. through a CT scan evaluation of back muscles in 44 patients 3 months after lumbar surgery [41]. Suwa et al. also evaluated postoperative changes in paraspinal muscles in 89 patients (42 single interlaminar level proce-
dures, 13 multiple levels, and 34 posterolateral fusion procedures). They found that paraspinous muscle thickness significantly decreased in the third group [42]. However, patients in this group were older and the authors related this in part to natural aging.

Kumbhare et al. studied muscle injury in lumbar surgery. Through a prospective evaluation of serum CK in 12 patients, the authors found that time to CK peak ranges between 9 to 47 hours postoperatively [43]. CK levels returned to baseline within 6 to 7 days, as were demonstrated in other studies [39]. The authors suggested a pre-surgery CK baseline for each individual to follow instead of using a standard range for an accurate detection of CK elevation. Furthermore, they recommend a CK test prior to the day of surgery to eliminate any falsely elevated CK levels due to fasting protocols. In another study, the authors found a direct correlation between the surface area of retracted muscles and postoperative CK levels taken at different times postoperatively in a group of patients undergoing posterior lumbar decompression surgery [3].

Therefore, serum CK is a valid measurement of muscle injury in lumbar surgery. This validity is strongest at 12 hours (R = 0.57, p < 0.05) and 24 hours (R = 0.58, p < 0.05), but weaker at 6 hours (R = 0.45, p < 0.05) and nonsignificant at 48 hours (R = 0.28, p > 0.1).

On the other hand, rare are the studies that did not find the same results. Davidas et al. studied CK and myoglobin in patients with different surgeries [44]. They conclude that CK is not a good index of the release of haematic pigments (the dangerous ones in RM), and that myoglobinuria could prove to be more helpful.

With the evolution era of minimally invasive approaches, recent studies tried to evaluate the effect of minimally invasive procedures on muscle injury. In 2010, Fan et al. in a prospective study compared 28 patients undergoing minimally invasive (MI) one-level PLIF to 31 patients undergoing an open approach [45]. Subjects were followed for over a year, and 16 from each group were evaluated by MRI. The MI group had less back pain (p < 0.001), less multifidus muscle atrophy (p < 0.001) with mean reductions of cross sectional area of 12.2% compared to 36% in the conventional open group. These changes were also significantly correlated with postoperative CK levels. Another consecutive series compared 41 patients undergoing MI one level PLIF to 50 undergoing traditional open approach [46]. Serum CK was markedly less in the MI group. Twenty-one patients (11 from the MI group versus 10 from the open group) underwent MRI evaluation at the last follow-up (Over a year). Postoperative cross-sectional area of multifidus muscle was significantly smaller than the preoperative one in the open group. On the contrary, there was no difference in the MI group. However, there was more fatty infiltration postoperatively in both groups, being greater in the open group. In both studies, the authors always evaluated muscle changes (or fatty infiltration) after 10 months of surgery based on a previous study showing that muscle edema can last as long as 10 months following lumbar surgery [42]. In 2011, a double-blinded RCT on 216 patients with lumbar disc herniation compared tubular discectomy with conventional microdiscectomy, both considered as MI techniques, but subperiosteal muscle dissection is in fact needed in the conventional technique [47]. Postoperative CK levels were evaluated in all patients, and cross-sectional area of multifidus muscle at one year along with muscle atrophy were analyzed in 140 patients. Tubular discectomy, a muscle splitting technique, was expected to reduce muscle damage. However, there was no statistical difference in CK elevations or in atrophy grade between both groups, although cross-sectional area ratio (post/preoperative) was significantly higher in conventional microdiscectomy. The authors conclude that tubular discectomy did not result in reduced muscle injury. Moreover, patients undergoing the latter technique showed higher postoperative pain scores. Tubular approach could disrupt muscle fibers even more than a sharp incision.

ROLE OF CK-MB IN SPINE SURGERY

CK-MB is known as a cardiac marker. Its specificity for cardiac muscle injury is superior to isoenzyme MM. However, it is not correlated with myocardial infarction after spine surgery [48]. Eleven of 30 patients in a prospective analysis had serum CK-MB without myocardial infarction. Moreover, CK-MB was found in paraspinal muscles of 93% of patients in this study. Lenke et al. also demonstrated elevations of CK-MB following 20 spinal procedures without any overt manifestations of myocardial injury [49]. However, Wukich et al. recommend determining CK-MB along with a ratio for lactate dehydrogenase (LD-1/LD-2) to evaluate a suspected myocardial infarction postoperatively [50]. CK-MB levels exceeding 50 IU/L combined with LD ratio exceeding 1 should not be attributed to muscle damage alone.

CONSIDERATIONS IN SCOLIOSIS SURGERY

The literature is very poor concerning this particular situation. Younghman and Edgar reviewed early and late complications on 319 operated adolescent idiopathic scoliosis [51]. In their series, no renal damage or RM was reported. However, the paper lacked any information concerning renal function and CK levels. Rylance et al. in 1988 did a prospective study to evaluate the effect of induced hypotension on renal function after a scoliosis intervention [52]. Following 52 operations in 43 patients, of which 38 were adolescent idiopathic scoliosis, no renal function was altered. Their hypothesis was that peroperative hypotension, blood loss, myoglobinuria from muscle damage, and fat embolism from bone trauma can compromise renal function. Forty-three were positioned prone for posterior fusion, and the rest were lateral decubitus for anterior fusion. Harrington rods were the implants used for instrumentation, and Zielke implants were used in...
some patients operated by an anterior approach. Blood pressure was maintained at a systolic level of 60 to 70 mmHg. Blood loss ranged from 120 to 3200 mL (Mean: 725 mL). Marked elevations of CK were noted in the first 4 days, especially at day 1 postop (Range: 321 to 7090 UI/L). No rise of CK-MB was noted. The authors concluded that induced hypotension for reducing blood loss in scoliosis surgery is safe in the presence of a good intravenous infusion to protect renal perfusion. Another similar study comparing two groups of adolescent idiopathic scoliosis (one group with controlled hypotension versus one group without hypotension) showed the same result [53].

RECOMMENDATIONS FOR MONITORING CK

The literature is inconclusive concerning a cutoff threshold of CK levels correlated with ARF. What is sure is that not only the blood level of CK matters but also many factors play a role in developing RM-induced ARF.

This paper focuses on RM and ARF following spine surgery. It shows that theses complications are only described in certain situations, and are dependent mainly on the patient himself, the length of surgery, and the surgical position. This review can give a glimpse on situations where CK monitoring is really essential to prevent RM and subsequent ARF, and on situations where high numbers of CK only direct us towards more blood tests, useless hospital stay, and avoidable financial costs. Therefore, the following situations listed below in Table II are all propositions from the current literature where monitoring CK levels is essential, but more prospective trials are needed for a better conclusion.

CK is a valid measure of muscle injury following spinal surgery, and particularly CK-MM. However, CK-MB elevations constitute only a small proportion of total CK, and they are not associated with any cardiac muscle injury. Therefore, total CK remains the best cost-effective measurement to muscle damage following spine surgery.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>CIRCUMSTANCES WHERE MONITORING CREATINE KINASE LEVELS IS ESSENTIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery where muscle retraction is unavoidable</td>
<td></td>
</tr>
<tr>
<td>Obese patients, and particularly the morbid obese (BMI > 40 kg/m²)</td>
<td></td>
</tr>
<tr>
<td>The elderly and the diabetic patient</td>
<td></td>
</tr>
<tr>
<td>Prolonged lateral decubitus and chest knee position (> 4h)</td>
<td></td>
</tr>
<tr>
<td>Patients receiving ARBs or ACEIs (high risk of hypotension preoperatively)</td>
<td></td>
</tr>
<tr>
<td>Postoperative metabolic acidosis (base deficit ≤ -4) or Serum creatinine ≥ 1.5 mg/dL</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

20. De Tommasi C, Cusimano MD. Rhabdomyolysis after...

